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1 INFM e Dipartimento di Fisica “E. Amaldi”, Università di Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
2 INFM e Dipartimento di Fisica, Università “La Sapienza”, 00185 Roma, Italy
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Abstract. We report on the non-linear electric field effect in the conductivity of disordered conductors.
We find that the electron-electron interaction in the particle-hole triplet channel strongly affects the non-
linear conductivity. The non-linear effect introduces a field dependent temperature scale TE and provides
a microscopic mechanism for electric field scaling at the metal-insulator transition. We also study the
magnetic field dependence of the non-linear conductivity and suggest possible ways to experimentally
verify our predictions. These effects offer a new probe to test the role of quantum interference at the
metal-insulator transition in disordered conductors.

PACS. 72.10.-d Theory of electronic transport; scattering mechanisms – 72.15.Rn Localization effects
(Anderson or weak localization)

Disordered conductors have been the subject of theoretical
and experimental study for almost twenty years [1,2]. Re-
cently there has been a strong resurgence of interest in the
field due to the unexpected discovery of a metal-insulator
transition (MIT) in two-dimensional systems [3]. Various
suggestions have been made concerning the origin of the
temperature dependence of the resistivity in the metallic
phase and the nature of the metal-insulator transition [4].
One main question is whether the transition is of a clas-
sical origin or if it is a real quantum phase transition. In
the first case, if a standard Landau quasi-particle picture
applies the observed resistivity could be attributed to a
temperature dependent scattering time in the context of
the semi-classical Boltzmann-Landau kinetic equation [5].
In the second case, it has been pointed out [6] that the
occurrence of a metallic phase and a metal-insulator tran-
sition in two dimensional systems is indeed possible within
the standard theory of disordered-interacting electrons [7].

To discriminate between these possibilities one needs
specific probes for quantum interference effects. Magne-
toresistance measurements are the standard probe for the
amplitude of weak localization (WL) and for quantum
interference from the combined contribution of disorder
and electron-electron interaction (EEI) in the particle-hole
triplet channel [8]. Until now no probe has been known for
the particle-hole singlet channel. In this paper we propose
a new probe for the EEI contribution (both for the singlet
and the triplet) based on the non-linear conductivity in
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the presence of a static electric field. We recall that WL
is not affected by such a field [1,9].

In reference [10] we have found that a static (or low
frequency) electric field acts as a source of dephasing in
the particle-hole channel and introduces a characteristic
temperature TE = (De2E2)

1
3 below which interference ef-

fects are suppressed. Here we extend this result in two
important directions. First, we include the scattering am-
plitude in the particle-hole triplet channel, γ2, which is
large in the metallic phase of two-dimensional electron sys-
tems [11]. We find that the value of γ2 has a dramatic effect
on the non-linear conductivity at large electric field. Sec-
ond, we allow for the renormalization of the quasi-particle
diffusion coefficient D → Dqp, defined below, and dis-
cuss its implications for the temperature scale TE and for
electric field scaling.

Before giving details of the mathematical derivation a
qualitative understanding of the effect may be obtained by
simple physical arguments along the lines of reference [12].
In a generalised Hartree-Fock picture one electron is scat-
tered by the potential created by all the other electrons.
From a semi-classical point-of-view, a local, single-particle
quantity, like current, only involves closed paths. Further-
more, the EEI corrections are dominated by all the other
electrons retracing backwards-in-time (as holes) almost
the same closed paths. At finite temperature only trajec-
tories which are traversed in a time η < 1/T contribute
to quantum corrections. Although the two electrons go
around the same closed path they have different starting
positions. The first electron starts at the observation point
x1 at time zero, while the second electron will only start
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Fig. 1. Pictorial representation of the current formula. Four
dashed lines represent a diffuson.

to retrace the path at the point of interaction x2 at time
t1. This means that the second electron will traverse part
of the closed path at a different time. In the presence of a
vector potential the accumulated phase difference is then
φ1 − φ2 = e

∫ 0

t1−η dt′ẋ1(t′) ·A(x1(t′), t′) − e
∫ η
t1

dt′ẋ2(t′) ·
A(x2(t′), t′). If the vector potential is time independent
(e.g. a magnetic field) these phases completely cancel.
However, if the vector potential is time dependent (as for
a static electric field) the time delay leads to a finite phase
difference φ1−φ2 = e(x2−x1)·Eη, which suggests that the
EEI correction should be sensitive to a static electric field,
in contrast to WL. Such a phase-sensitivity leads to non-
linear conductivity. It is possible to estimate the typical
electric field scale where dephasing and non-linear effects
in a weakly disordered metal become important. The typ-
ical time scale is the inverse temperature and the typical
length scale is the thermal length LT = (Dqp/T )1/2. The
non-linear effects become important when the phase dif-
ference induced by the electric field is of order one, which
leads to the condition that the voltage drop over a ther-
mal length becomes of the order of the temperature, i.e.,
when eELT ∼ T . This condition defines the temperature
scale TE given above.

While the above physical discussion is quite general,
we now present a quantitative theory which relies upon
the weak disorder limit, g(LT) � 1, g being the conduc-
tance at scale LT. We start with the expression for the
EEI quantum correction to the current due to the inter-
play between disorder and interaction. Within the real-
time Keldysh formalism [13] we obtain:

δj(t) = −4τ2e

π

∫
dηdt1dt2

(
πT

sinh(πTη)

)2∑
q

Dqpq

×
∑
J,M

VJ,M(q, t1 − t2)Dη′=0
J,M (t2, t− η; q)

×Dη
J,M(t− η/2, t1 − η/2; q). (1)

A pictorial representation of this equation is shown in
Figure 1. The details of its derivation may be found in [10].
The sum

∑
J,M is over one singlet (J = 0,M = 0) and

three triplet channels with J = 1,M = 0,±1. In equa-
tion (1) the propagation is in the presence of an external

vector potential and the short time cut-off in the problem
is the elastic scattering time τ . VJ,M and Dη

J,M (t, t′) are
the interaction and the diffusion propagator in the spin
channel (J,M). Here the time arguments t, t′ refer to the
incoming and outgoing centre-of-mass time of the particle-
hole pair and η to the relative time which is constant dur-
ing the propagation. Notice that both VJ,M and DJ,M are
retarded functions. The factor containing the hyperbolic
sine comes from the Fourier transform of Fermi functions
and limits us to trajectories with traverse time η < 1/T .
The interaction is found by summing ladder diagrams and
is given by

VJ,M (q, ω) = γJ
−iω +Dqpq

2 + iMΩ̃s

−i(1− 2γJ)ω +Dqpq2 + iMΩ̃s
, (2)

where γJ is the static amplitude for scattering between
particles and holes. The quasi-particle diffusion constant
can be expressed in terms of the particle diffusion con-
stant Dqp = D/Z. The parameter Z, which arises in
the context of the Fermi liquid theory of disordered sys-
tems [7] as the energy renormalization, plays the role of
mass renormalization, m∗/m, in the effective Fermi liquid
theory of disordered systems [14]. The interaction ampli-
tude in the spin singlet channel is given by γJ=0 = 1/2
for long range Coulomb forces. The triplet amplitude, for
which we adopt in the following the standard notation
γJ=1 = −γ2/2, is related to the Landau parameter F 0

a
via γ2 = −A0

a = −F 0
a /(1 + F oa ). The diffusion propagator

DJ,M is given by the solution of the differential equation

{
∂

∂t
+Dqp [−i∇+ eAη(r, t)]2 + iMΩ̃s

}
Dη
J,M(t, t′)

=
1
τ
δ(t− t′)δ(r− r′). (3)

where Aη(r, t) = A(r, t+ η/2)−A(r, t− η/2). The term
iMΩ̃s is due to the Zeeman coupling, where Ω̃s = (1 +
γ2)Ωs with Ωs = gµBH.

We now evaluate the current explicitly. According to
equation (3) the interaction VJ,M and the first of the two
diffusons in (1) do not depend on the vector potential. An
electric field, however, affects the second diffuson in (1)
due to the non-zero time delay η between the particle and
hole. For a static field the vector potential is A(t) = −Et
and the solution of (3) is

Dη
J,M

(
t− η

2
, t1 −

η

2
; q
)

=

1
τ

exp
{
−
[
Dqp(q− eEη)2 − iMΩ̃s

]
(t− t1)

}
.



M. Leadbeater et al.: Non-linear conductivity and quantum interference in disordered metals 279

Table 1. Table of coefficients which appear in the expressions
for the current. For small γ2 these reduce to f1

d (γ2) = 2/d −
3γ2/2, f3

d (γ2) = 4/(d(2+d))−γ2/4, g1
d(γ2) = γ2/2 and g3

d(γ2) =
−γ2/12.

f1
d (γ2) 2

d
− 3 4(1+γ2)

d
2 −4−2dγ2

(d−2)dγ2

f3
d (γ2) 4

d(d+2)

�
1 + 3 [24+(16−4d)γ2 ](1+γ2)

d
2 −24−(2+d)γ2(8+dγ2)

(d−4)(d−2)γ3
2

�

f1
2 (γ2) 1 + 3

h
1− 1+γ2

γ2
ln(1 + γ2)

i

f3
2 (γ2) 1

2 + 3
2

h
6+5γ2
γ2
2
− (6+2γ2)(1+γ2)

γ3
2

ln(1 + γ2)
i

g1
d(γ2) 2 2(1+γ2)

d
2 −(1+γ2)2[2+(d−4)γ2]
(d−6)(d−4)γ2

g3
d(γ2) 4 [24+4(8−d)γ2 ](1+γ2)

d
2 −{24+(d−2)γ2 [8+(d−4)γ2]}(1+γ2)2

(d−8)(d−6)(d−4)(d−2)γ3
2

g1
2(γ2) 1

2γ2(1 + γ2)

g3
2(γ2) 1+γ2

γ2
2

h
3γ2+6−γ2

2
6 − 1+γ2

γ2
ln(1 + γ2)

i

The equation for the current after integrating over the
momentum then becomes

δjJ,M = −E
4e2Dqp

π
γJ

(
1− 2γJ
4πDqp

)d/2

×
∫ ∞
τ

dη
[

πT

sinh(πTη)

]2 ∫ η

0

dt1
t1η

(η − 2γJ t1)1+d/2

× cos[MΩs(η − 2γJt1)]

× exp
[
−T 3

Eη
2t1(η − t1)/(η − 2γJ t1)

]
(4)

where we have introduced T 3
E = Dqp(eE)2 and d is the

dimension. It is clear from this equation that the electric
field provides a dephasing time ∼ T−1

E , since in the low
temperature limit T � TE the exponential now cuts off
all times larger than T−1

E .
We first consider the current in the weak electric field

regime and derive the leading non-linear terms. In the
absence of magnetic field we find

δj = E
e2

2d−1π2

(
Dqp

T

) 2−d
2
∫ ∞
πTτ

dx
x2− d2

sinh2(x)

×
(
f1
d (γ2) + f3

d (γ2)
x3T 3

E

π3T 3

)
(5)

where the functions f1,3
d are listed in Table 1. For the sake

of completeness we have also included the term linear
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Fig. 2. The electric field dependence of the interaction correc-
tion to the conductivity in two dimensions in units of e2/~ for
γ2 = 0 (dashed line) and γ2 = 5 (solid line). Note the different
scales used for the two values of γ2.

in the electric field which reproduces the well-known
interaction correction to the conductivity. Notice that
the functions f1,3

d (γ2) are the sum of the singlet and the
triplet contributions. The results for δσ = δ|j|/|E| are

δσ1 =
e2

π2
LT

[
−2.46f1

1 (γ2) +
4.88
π3

f3
1 (γ2)

T 3
E

T 3

]

δσ2 =
e2

2π2

[
−f1

2 (γ2) ln
( e

2πTτ

)
+

π

30
f3

2 (γ2)
T 3
E

T 3

]

δσ3 =
e2

4π2
L−1

T

[
1.83f1

3 (γ2) +
2.32
π3

f3
3 (γ2)

T 3
E

T 3

]
(6)

where LT is the thermal length defined previously and we
have left out temperature independent terms. We recall
that, in the case of spin-singlet interactions only (γ2 = 0)
the conductivity decreases with decreasing temperature
(i.e. f1

d (0) > 0), whereas for sufficiently large triplet
amplitude γ2 the latter dominates and leads to an in-
crease of conductivity with decreasing temperature (i.e.
f1
d (γ2) < 0). The non-linear coefficient f3

d (γ2), however, is
generically positive and only changes sign for large γ2 in
d = 3.

We study the cross-over behaviour from small to large
electric fields by numerically integrating equation (4). The
conductivity as a function of the electric field is plotted in
Figure 2 for two values of γ2 for d = 2. At zero field, for
γ2 = 0 (γ2 = 5) the correction is localising (anti-localising)
with δσ2 < 0 (δσ2 > 0). The quadratic increase at small
fields has a positive curvature irrespective of the value of
γ2. At large field, the temperature scale disappears and the
correction δσ has the same form as the linear conductivity
with TE replacing the temperature.

Non-linear effects also appear in the magnetoconduc-
tance which originate from the magnetic field depres-
sion of the M = ±1 triplet contributions to the current.
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Fig. 3. The magnetic field dependence of the conductivity in
two dimensions in units of e2/~ for two different values of TE
and for γ2 = 2.5. The inset shows the difference ∆σ2(TE =
5T )−∆σ2(TE = 0.1T ) of the two curves.

In particular we find for small TE and small Zeeman en-
ergy Ωs

∆σ1 = − e
2

π2
LT

Ω2
s

T 2

[
2.32
π2

g1
1(γ2) +

41.85
π5

g3
1(γ2)

T 3
E

T 3

]

∆σ2 = − e2

2π2

Ω2
s

T 2

[
3ζ(3)
2π2

g1
2(γ2) +

π

42
g3

2(γ2)
T 3
E

T 3

]

∆σ3 = − e2

4π2
L−1

T

Ω2
s

T 2

[
1.58
π2

g1
3(γ2) +

13.04
π5

g3
3(γ2)

T 3
E

T 3

]
(7)

where ∆σ = σ(Ωs) − σ(0) and the functions g1,3
d are

also shown in Table 1 [15]. To illustrate the behaviour
at large Ωs we again resort to numerical integration of
equation (4). In Figure 3 we show the magnetic field de-
pendence of the current for two choices of TE for γ2 = 2.5.
Notice that for such a value of γ2 the zero magnetic field
conductivity interference correction has an anti-localizing
character. This explains the suppression of conductivity
with increasing TE. For small TE we obtained the stan-
dard behaviour of a initial quadratic decrease on the scale
of the temperature followed by a logarithmic suppression
of the corrections. For large TE however, the temperature
disappears as an energy scale and, although the curve ap-
pears similar, the scale of the magnetic field is now set
by TE . Expanding equation (4) to leading order in the
magnetic field for TE � T one obtains ∆σ ∝ Ω2

s/T
2
E.

The effects described in this paper may be detected
by measuring the current-voltage characteristics. In such
a measurement however the electron temperature changes
with the applied voltage and one has to discriminate heat-
ing from non-heating non-linear effects. A direct way to
isolate the non-linear contribution due to the dephasing
effect of E would be to measure the electron temperature
Tel for a given E (for instance by noise measurements
as in [16]). Then σ(Tel, 0) − σ(T,E) yields the effect of

the electric field on the EEI contribution and provides
a direct probe of the relevance of quantum interference
in the p-h channels. Alternatively, at low temperature,
where Telτel−ph � 1 (τel−ph is the heat electron-phonon
relaxation time) non-heating effects could be detected by
exploiting the different time scales τel−ph and T−1

el which
control the frequency dependence of heating and non-
heating effects respectively. In a time-dependent electric
field, E(t) = E cos(Ωt), the electron temperature becomes
time dependent. For frequencies Ω > 1/τel−ph however the
temperature cannot follow the electric field, i.e. heating
becomes time independent. Non-linearities due to quan-
tum interference on the other hand follow the electric field
instantly as long as the frequency remains smaller than
the temperature. Thus measuring non-linear response in
the presence of a microwave with a frequency of the order
Ω ≥ 1/τel−ph offers a possibility to detect the predicted
effects [17].

Possible non-heating effects have already been ob-
served in different materials [18–21]. In particular a re-
markable electric field scaling was reported near the metal-
insulator transition [19]. Although the critical regime of
the MIT is most likely out of the reach of our pertur-
bative analysis around the metallic state we would like
to remark that our non-linear effect provides an explicit
mechanism for the electric field scaling via the tempera-
ture scale TE . On the basis of general scaling arguments
close to a quantum critical point, the temperature scales
as T ∼ ξ−z where ξ is the correlation length and z is
the dynamical critical exponent [22]. In a diffusive system
temperature and length scales are related via the diffu-
sion constant with T ∼ Dqp(ξ)/ξ2 implying a scaling of
D/Z = Dqp near the critical point as Dqp ∼ ξ2−z. From
our relation T 3

E = Dqpe
2E2 one then obtains the scal-

ing [19] E ∼ ξ−(1+z). In the experiments z is near one,
which corresponds to a vanishing quasi-particle density of
states and a growing quasi-particle diffusion constant near
the transition. This small value of z < 2 implies that the
electronic specific heat would vanish as cv ∼ Tξz−2 ∼
T 2/z. From these considerations one expects large non-
linear effects in the low temperature phase near the critical
point.

Such large effects have been observed in reference [20]
for a GaAs metallic sample near the metal-insulator tran-
sition. At low temperature (T = 80 mK) the conductivity
shows a non-monotonic behaviour of the type shown in
Figure 2 for large γ2. Notice that the initial weak increase
of the conductivity cannot be explained in terms of heat-
ing. By comparing with this experiment it appears that
the electric field scale over which the effect is observed is
at least two orders of magnitude below what we would
predict based upon a naive estimate of the diffusion con-
stant from the conductivity σ = 2e2DN0 and the free par-
ticle density of states N0 (i.e. assuming Dqp ∼ D) [23].
However, by allowing for quasi-particle diffusion constant
renormalization as implied by scaling one can obtain larger
effects, even though at present we cannot claim a definitive
agreement with the experiments [20].



M. Leadbeater et al.: Non-linear conductivity and quantum interference in disordered metals 281

Finally, we would like to point out that the effects dis-
cussed in this paper should have an enhanced relevance
in the presence of strong local electric fields such as in
percolative metallic systems. Whether percolation is im-
portant near the observed MIT is an open issue.
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